Abstract
Recycling polyethylene terephthalate (r-PET) bottles is a sustainable solution for reducing the accumulation of r-PET in landfills. The primary goal of this study is to determine the viability of combining fibers derived from waste r-PET bottles (r-PET) and date palm fibers (DPF) to produce hybrid unsaturated polyester (UP)-based composites. Hand lay-up was used to make the UP/r-PET/DPF composites, which had 10%, 20%, and 30% r-PET and date palm fibers by weight, with equal weights of the two. Recycled r-PET bottles and date palm leaflets were cut into 5–10 mm lengths and incorporated into the UP matrix. The composites were characterized by their flexural, morphological, thermal, dynamical mechanical, and water absorption characteristics. The thermal behavior of the composites improved when r-PET and DPF were added at high temperatures. However, the composites' flexural strength and storage modulus decreased due to their non-uniform distribution, which made it hard for the fillers to adhere to the UP matrix. SEM micrographs of the composite's fracture surfaces showed that the amount of agglomeration eventually increased as the filler loading increased. Lastly, the composites showed significant resistance to water absorption with lower proportions of DPF and r-PET fibers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.