Abstract
Simple SummaryCold-blooded organisms can become physiologically challenged when performing highly oxygen-demanding activities (e.g., flight) across different thermal and oxygen environmental conditions. We explored whether this challenge decreases if an organism is built of smaller cells. This is because small cells create a large cell surface, which is costly, but can ease the delivery of oxygen to cells’ power plants, called mitochondria. We developed fruit flies in either standard food or food with rapamycin (a human drug altering the cell cycle and ageing), which produced flies with either large cells (no supplementation) or small cells (rapamycin supplementation). We measured the maximum speed at which flies were flapping their wings in warm and hot conditions, combined with either normal or reduced air oxygen concentrations. Flight intensity increased with temperature, and it was reduced by poor oxygen conditions, indicating limitations of flying insects by oxygen supply. Nevertheless, flies with small cells showed lower limitations, only slowing down their wing flapping in low oxygen in the hot environment. Our study suggests that small cells in a body can help cold-blooded organisms maintain demanding activities (e.g., flight), even in poor oxygen conditions, but this advantage can depend on body temperature.Ectotherms can become physiologically challenged when performing oxygen-demanding activities (e.g., flight) across differing environmental conditions, specifically temperature and oxygen levels. Achieving a balance between oxygen supply and demand can also depend on the cellular composition of organs, which either evolves or changes plastically in nature; however, this hypothesis has rarely been examined, especially in tracheated flying insects. The relatively large cell membrane area of small cells should increase the rates of oxygen and nutrient fluxes in cells; however, it does also increase the costs of cell membrane maintenance. To address the effects of cell size on flying insects, we measured the wing-beat frequency in two cell-size phenotypes of Drosophila melanogaster when flies were exposed to two temperatures (warm/hot) combined with two oxygen conditions (normoxia/hypoxia). The cell-size phenotypes were induced by rearing 15 isolines on either standard food (large cells) or rapamycin-enriched food (small cells). Rapamycin supplementation (downregulation of TOR activity) produced smaller flies with smaller wing epidermal cells. Flies generally flapped their wings at a slower rate in cooler (warm treatment) and less-oxygenated (hypoxia) conditions, but the small-cell-phenotype flies were less prone to oxygen limitation than the large-cell-phenotype flies and did not respond to the different oxygen conditions under the warm treatment. We suggest that ectotherms with small-cell life strategies can maintain physiologically demanding activities (e.g., flight) when challenged by oxygen-poor conditions, but this advantage may depend on the correspondence among body temperatures, acclimation temperatures and physiological thermal limits.
Highlights
At present, the Earth’s atmosphere contains 21% O2 and the global average surface temperature is ca. 15 ◦C [1], but on a geological timescale, these parameters have been changing dramatically, driving ecological and evolutionary transitions in life
Adult males treated with rapamycin were characterized by smaller thoraxes, smaller wing epidermal cells and a lower wing load than the control males
Our general linear mixed modelling (GLMM) showed a significant interaction between the thermal and oxygen conditions during the measurements and the cell-size phenotype (F = 2.59, P < 0.035). This indicated that the effects of temperature and oxygen on flying Drosophila could not be fully interpreted without the simultaneous consideration of the phenotypic effects of our developmental treatments
Summary
The Earth’s atmosphere contains 21% O2 and the global average surface temperature is ca. 15 ◦C [1], but on a geological timescale, these parameters have been changing dramatically, driving ecological and evolutionary transitions in life. The spectacular emergence and subsequent disappearance of giant insects during the Carboniferous, Permian, and Triassic periods was linked to shifts in the amount of oxygen in the Earth’s atmosphere [2,9]. Some insects constantly occupy hypoxic microenvironments in organic soil, burrows, grain stores or water [11], or, as seen in species of fruit flies found at 5000 m a.s.l. in the Himalayas, inhabit high elevations with oxygen-poor conditions and low temperatures [12]. We note that the high-elevation environments are characterized by spatial co-gradients of elevation, temperature and oxygen partial pressure, and by dramatic temporal environmental fluctuations that can occur within hours, in addition to daily or seasonal fluctuations [12,13]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.