Abstract

The equiatomic CoCrFeMnNi alloy is currently one of the most studied high-entropy alloys. In our previous work, a new grade of CoCrFeMnNi high-entropy alloy with yttria-based particle dispersion was introduced showing improved mechanical properties, especially high-temperature strength and creep rate. In this study, a detailed analysis of room to high-temperature thermal properties was performed, as it is important for defining the future application of the alloy and opening the discussion on tailoring the thermal response. Thermal properties are not well known for the original CoCrFeMnNi alloy or for CoCrFeMnNi with yttria dispersion. As a result of the analysis, thermal properties of both alloys and the effect of the oxide dispersion are discussed. Most of the thermal properties remain unchanged. However, it was found that the presence of 0.3% yttria influences the oxidation rate of CoCrFeMnNi alloy at the initial and intermediate oxidation times. The onset of the oxidation is described in detail. Yttria nano-oxide dispersion and related grain refinement also reduce the microstructural degradation caused by the formation of voids due to outward Mn diffusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call