Abstract

The Mura basin in north-eastern Slovenia is made up of two depressions, developed during the Late Neogene and Early Pliocene all within a widespread system of Pannonian basins. Both depressions are characterized by the occurrence of thermal waters of somewhat different hydrogeochemical character. Radgona depression is in the northern part of the basin and reaches depths of about 2 km. Thermal waters are generally dominated by sodium-bicarbonate, not related to the age of an aquifer, its wallrock composition, the type of porosity or total concentration of dissolved solids. Locally, sulphate-rich waters are encountered, and they are related to the presence of gypsum in the rocks of pre-Tertiary basement. The adjacent Ljutomer depression is over 4 km deep and comprises compartments with stagnant or semi-stagnant aquifers. Herein saline waters predominate, even in the aquifers of carbonate composition and abundant CO2 gas. In shallower, unconsolidated, intergranular aquifers sodium-bicarbonate waters predominate. Thermal aquifers of this type are very important to the economy of the region, but they are also subjected to overexploitation which is reflected in time-dependent changes of dynamic pressures, temperature, conductance, salinity, pH and concentration of major ions, trace elements, dissolved gasses, and total organic carbon. Mineral waters occur in shallow aquifers or springs in marginal areas of the Radgona depression. Bicarbonate waters are dominated by calcium, or both calcium and sodium. Some mineral waters are formed mainly by penetration of CO2 gas into shallow aquifers and consequent water–rock interaction. Composition of some mineral waters indicate their possible evolution from thermal waters which have risen from central parts of the Radgona depression along deep-seated faults, and have been modified by cooling and mixing processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.