Abstract

The thermoelectric conversion efficiency of the thermoelectric material Bi2Te3 is significantly affected by its microstructure because of its anisotropy. In this study, the zone-melting technique is used to grow Bi2Te3 columnar crystals. The zone-melting process directionally solidifies and purifies an ingot by a moving a heater along the ingot. For predicting the temperature variation and distribution in the crystallization process and the microstructures of Bi2Te3, a zone-melting model is developed and numerical simulation techniques are used. The simulation results are compared with experimental measurements to verify the numerical model. The verified numerical model is used to investigate the optimal process parameters. The process parameters, namely the temperature of the heater and the movement speed of the heater and the cooling devices, are adjusted in order to obtain good-quality columnar crystals. The shapes of the solidification interface, which greatly affect the direction of grain growth and the grain size, are compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.