Abstract

Laser powder bed fusion (L-PBF) process involves with the construction of phase transformation, melting, and rapid solidification of weld metal powder bed which affects the properties and the microstructure of final parts, e.g. density, dimension, mechanical properties, void, porosity, and non-fully melted particle. The aims of this work were to study the effect of process parameters, e.g. laser power and scanning speed, on the temperature field and melt pool geometry and the characteristics of single melting track in the L-PBF process by using the commercial CFD software simulation Flow-3D (Flow-weld). The laser power, scanning speed, laser spot diameter, and layer thickness varied in this study were 120 W, 140 W, 0.4 m/s, 0.6 m/s, 0.8 m/s, 80 μm and 50 μm respectively. The results stated that at the lower scanning speed, the temperature field has a region of heat distribution larger than that of the higher one. The geometry of melt pools can be changed from ellipse shape to tear drop shape when the scanning speed is increased. The width and depth of laser melting track is increased when the higher laser power and lower scanning speed are applied. The void is found underneath the laser melting track when the scanning speed changes from 0.4 m/s to 0.6 m/s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.