Abstract
Direct laser deposition (DLD) is widely used in precision manufacturing, but the process parameters (e.g., laser power, scanning patterns) easily lead to changes in dimensional accuracy and structural properties. Many methods have been proposed to analyze the principle of distortion and residual stress generation, but it is difficult to evaluate the involvement of temperature and stress in the process of rapid melting and solidification. In this paper, a three-dimensional finite element model is established based on thermal–mechanical relationships in multilayer DLD. Differences in temperature and residual stress between continuous laser deposition (CLD) and pulsed laser deposition (PLD) are compared with the numerical model. To validate the relationship, the temperature and residual stress values obtained by numerical simulation are compared with the values obtained by the HIOKI-LR8431 temperature logger and the Pulstec μ-X360s X-ray diffraction (XRD) instrument. The results indicate that the temperature and residual stress of the deposition part can be evaluated by the proposed simulation model. The proposed PLD process, which includes continuous pulsed laser deposition (CPLD) and interval pulsed laser deposition (IPLD), were found more effective to improve the homogeneity of temperature and residual stress than the CLD process. This study is expected to be useful in the distortion control and microstructure consistency of multilayer deposited parts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.