Abstract

ABSTRACTWood plastic composites (WPCs) are a new generation of green composites which can come mostly from recycled materials. This study focuses on the thermal conductivity and mechanical properties of WPCs filled multiwalled carbon nanotubes (MWCNTs). The thermal conductivity increases with increasing amount of MWCNTs and decreases with increasing temperature. By comparing the temperature changes of specimens during heating and cooling processes, WPCs with higher MWCNTs contents presents higher average temperature when heated until equilibrium temperature. From differential scanning calorimeter test, the melting temperatures of MWNTs reinforced WPCs change slightly, but the crystallinity is reduced with the increasing amount of MWCNTs. Based on a series of laboratory experiments carried out to investigate the mechanical performance, it can be concluded that the addition of the MWCNTs decreases the mechanical properties of WPCs due to the decohesion between thermoplastic matrix and MWCNTs particles under stress. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46308.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call