Abstract

Miscanthus biocarbon (MB), a renewable resource-based, carbon-rich material, was melt-processed with poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) to produce sustainable biocomposites. The addition of the biocarbon improved the Young’s modulus of PHBV from 3.6 to 5.2 GPa at 30 wt % filler loading. An increase in flexural modulus, up to 48%, was also observed. On the other hand, the strength, elongation-at-break and impact strength decreased. Morphological study of the impact-fractured surfaces showed weak interaction at the interface and the existence of voids and agglomerates, especially with high filler contents. The thermal stability of the PHBV/MB composites was slightly reduced compared with the neat PHBV. The biocarbon particles were not found to have a nucleating effect on the polymer. The degradation of PHBV and the formation of unstable imperfect crystals were revealed by differential scanning calorimetry (DSC) analysis. Higher filler contents resulted in reduced crystallinity, indicating more pronounced effect on polymer chain mobility restriction. With the addition of 30 wt % biocarbon, the heat deflection temperature (HDT) became 13 degrees higher and the coefficient of linear thermal expansion (CLTE) decreased from 100.6 to 75.6 μm/(m·°C), desired improvement for practical applications.

Highlights

  • With increasing concerns over limited fossil-fuel reserves and the burden of human activities on the environment around the world, substantial opportunities for biobased and biodegradable plastics and composites have emerged [1]

  • We explore the use of biocarbon, a carbon-rich material obtained by the incomplete combustion of biomass, as a filler in PHBV

  • The addition of the Miscanthus biocarbon increased the tensile modulus of PHBV

Read more

Summary

Introduction

With increasing concerns over limited fossil-fuel reserves and the burden of human activities on the environment around the world, substantial opportunities for biobased and biodegradable plastics and composites have emerged [1]. Among the most popular bioplastics are the polyhydroxyalkanoates (PHAs), a family of biopolyesters that can be synthesized by microorganisms from renewable resources [2]. (3-hydroxybutyrate) (PHB) is one of the most popular PHAs and is being tested for packaging and biomedical applications [3,4]. PHB is extremely brittle and can suffer thermal degradation during processing [5]. Compared with PHB, PHBV has decreased brittleness and a wider processing window [6]. PHBV is biocompatible and has good gas barrier properties among biobased polymers [7]. It has shown great potential in its recyclability, with the capacity for being processed multiple times with minimal change in its material properties [8]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.