Abstract

Purpose – The purpose of our paper is to investigate thermal and mechanical properties of Ag sintered layers used for assembly of SiC diode to Direct Bonding Copper (DBC) interposer. How SiC devices are assembled to ceramic package defines efficiency of heat transfer and mechanical support. Design/methodology/approach – Ag microparticles, sized 2-4 μm and flake shaped, were used as joining material. The parameters of sintering process were as follows: temperature 400°C, pressure 10 MPa and time 40 min. It was found that after sintering and long-term aging in air at 350°C the adhesion is in the range of 10 MPa, which is enough from a practical point of view. The thermal properties of the SiC die assembled into a ceramic package were also investigated. In the first step, the calibration of the temperature-sensitive parameter VF (IF = 2 mA) was done and the relation between VF and temperature was found. In the next step, the thermal resistance between junction and case was determined knowing junction and case temperature. Findings – For SiC diode with Au bottom metallization joined to the DBC interposer by Ni/Au metallization by Ag microparticle layer, Rth j-c is in the range of 2-3.5°C/W, and for SiC diode with Ag bottom metallization joined to DBC interposer with Ag metallization by Ag microparticle layer, Rth j-c is in the range of 4.5-5.5°C/W. Research limitations/implications – In the future, research on thermal resistance of SiC diodes assembled onto the DBC interposer with Au and Ag metallization in the temperature range up to 350°C needs to be carried out. To do this, it necessary to find a solution for the attaches that leads to ceramic package able to work at such high temperature. Originality/value – Obtained results are comparable with results mentioned by other studies for eutectic Au/Sn or SAC solder joints; however, the solution proposed by us can properly work at significantly higher temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.