Abstract
A series of composite materials were produced incorporating polyhedral oligomeric silsesquioxane (POSS) derivatives into polycarbonate (PC), by melt blending. Significant differences in compatibility were observed depending on the nano-scale filler's specific structure: trisilanol POSS molecules generally provided better compatibility with PC than fully-saturated cage structures, and phenyl-substituted POSS grades were shown to be more compatible with PC than fillers with other functional groups. Trisilanolphenyl-POSS/PC composites possess the best overall performance among the POSS materials tested. The high compatibility between the trisilanolphenyl-POSS and polycarbonate matrix results in generation of transparent samples up to 5 wt% POSS content. Slightly enhanced mechanical properties including tensile and dynamic mechanical modulus are observed with the increase of trisilanolphenyl-POSS loading at the cost of decreasing ductility of the nanocomposites. Importantly, upon orientation of the PC/POSS nanocomposite, crystallization of POSS within the oriented material results—this observation is consistent with a growing number of observations which suggest that ‘bottom-up’ formation of structures incorporating multiple POSS cages result from orientation of these nanocomposites, and that the hybrid organic–inorganic inclusions may be at the heart of observed nano-scale reinforcement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.