Abstract

ABSTRACT U3Si2 has been explored as an alternative nuclear fuel material for increased accident tolerance. However, scatter has been reported in the thermal properties possibly because of the pores and impurities within the samples. In the present study, we prepared a polycrystalline U3Si2 bulk sample with high density and without impurity, and evaluated its thermal and mechanical properties. The sample was synthesized by arc melting and spark plasma sintering, followed by annealing. The density of the U3Si2 pellet was 96% of the theoretical density. The heat capacity was measured and compared with the calculation data. In addition, the measured data were used to evaluate thermal conductivity of U3Si2. The measurement data of elastic properties were compared with the theoretical calculation and agreed well. A high thermal conductivity and hardness compare to UO2make it favorable to anticipated as alternative nuclear fuel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.