Abstract

The thermal and mechanical properties of orthocobaltates, ACoO3 (A = Sm, Tb, Dy, Ho, and Er), have been investigated using the modified rigid ion model (MRIM) by incorporating the effect of lattice distortions. We have computed the variations of specific heat and thermal expansion coefficient for these orthocobaltates in wide temperature range of 1 K (−272 °C) ≤ T ≤ 1000 K (727 °C). The calculated results of specific heat, thermal expansion, bulk modulus, and other thermal and mechanical properties accord very well with the available experimental data, implying that MRIM represents properly the nature of the perovskite-type rare earth cobaltates. In addition, we have also reported the results on molecular force constant (f), Reststrahlen frequency (υ), cohesive energy (ϕ), Debye temperature (θD), and Gruneisen parameter (γ).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call