Abstract
The typical package available for high power GaN application has the devices directly attached onto a metal flange, which could contribute significantly to the overall thermal resistance. This paper discusses an alternative approach to packaging both single and multiple devices through a heat spreader, which could potentially improve thermal performance and bring significant benefits to assembly in yields and cost. However, the heat spreader could also introduce significant CTE mis-match and potential concerns in reliability. Nonlinear 3D finite element analysis (FEA) was conducted to characterize the thermal performance and evaluate mechanical/reliability concerns. Thermal modeling considered single and multiple die applications, and the results show13–15% thermal improvement with the copper heat spreader. Mechanical analysis focused on the thermal loads of the die attach and solder reflow processes. It reveals that the die attach process is more critical as shown in the higher stress due to higher thermal load, but stress/strain levels appear to be acceptable. Thus, this alternative approach could be a viable solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.