Abstract

Abstract The engagement of waste tires rubber as source of raw materials for different applications can be a partial solution to the great environmental problems caused by these products. In this study, waste tire rubber was devulcanized using both mechano–chemical and microwave methods. This process was achieved using different concentrations of 2-mercapto benzothiazole disulfide (MBTS) and tetramethylthiuram disulfide (TMTD) as a devulcanizing agent and different microwave devulcanizing times. The optimum content of both MBTS, TMTD and suitable microwave treatment time to make continuous film were noted. The devulcanized waste rubber was then added, at different concentrations, to virgin styrene–butadiene rubber (SBR). The thermal properties and dynamic mechanical behaviors were investigated for all blends. The thermal analysis proved that natural and styrene butadiene rubber are the main two constituents of the waste tire rubber utilized in this study. The mechanical behavior of the SBR blends remarkably improved by using 20 phr waste rubber (WR) devulcanized by 2 phr MBTS and by exposure for 2.2 min to microwaves. Storage modulus, tearing strength and tension set behaviors notably improved for all SBR/WR blends by irradiating with gamma ionizing radiation with a dose of 100 kGy and further improvement could be attained by increasing the dose up to 200 kGy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.