Abstract

Quantitative results are presented for a model involving large-scale simple shear of continental lithosphere. The locally compensated, finite element model includes the effects of sedimentation, radiogenic heat production in the crust and sediments, and finite rates of extension. Flexural effects during firting are examined using a simple shear model with a uniform initial elastic thickness. The locally compensated model predicts that a breakup unconformity develops on the upper plate when extension occurs at typical plate tectonic velocities. Subsidence occurs as the upper and lower lithospheric plates separate. Extension creates the potential for large accumulations of sediment ( ∼ 20 km), most of which is syn-rift if sedimentation keeps pace with subsidence. The effect of flexure is to modify the shape of the detachment surface and the uplift patterns on the flanks of the upper and lower plate sedimentary basins. A model which incorporates flexure predicts significant uplift of the lower plate as it is unloaded by the upper plate during extension. The Wernicke simple shear model can be distinguished from its opposite end member, the McKenzie pure shear model, by the predicted asymmetry in thermal evolution (higher predicted heat flux within the upper plate), uplift/subsidence histories and stratigraphic development of the upper and lower plates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call