Abstract

ABSTRACTBioactive materials based on polymer/hydroxyapatite are currently being extensively investigated as materials for promotion of bone tissue regeneration and reconstruction [1]. In this work, a material interpenetrating based on poly 2-hydroxyethyl methacrylate (pHEMA), Chitosan and hydroxyapatite (HA) was prepared following the methodology of the foaming gas Damla Çetin [2], generating an interpenetrated network with the chitosan filled with hydroxyapatite. The materials were evaluated by thermal gravimetric analysis (TGA) and in vitro bioactivity [3] (SBF) and characterized by using scanning electron microscopy (SEM). The TGA studies suggested that there was not existence of possible interactions between polymers and HA but there is a thermal stability increase in the HA content. Meanwhile, SBF and its characterization by SEM, was found that the materials are bioactives as indicated by the formation of a bone-like apatite layer after immersion in simulated body fluid, indicating the potential of this material for use in bone tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.