Abstract
In this study, hydrodynamic and heat transfer of non-Newtonian nanofluid behavior is investigated in a wavy microchannel with rectangular obstacles. Aluminum oxide as nanoparticles (Al2O3) with 0.5% and 1.5% volume fractions and three different diameters (25, 45 and 100 nm) are added to pure water as a base phase to form a nanofluid structure. In order to form the non-Newtonian nanofluid, 0.5% carboxy methyl cellulose (CMC) is added to the nanofluid structure. Up and down walls of microchannels at the middle section where obstacles are located have constant 50,000 W⁄m2 heat flux. Inlet temperature is constant and equal to 298 K with different Reynolds numbers varying as 5, 50, 150 and 300. Rib heights varying between 3 and 7 μm for five cases with different nanoparticle volume fractions, nanoparticle diameters and Reynolds numbers are investigated. Nusselt number, friction factor and pressure drop are studied. Results indicated that the average Nusselt number is increased by increasing the volume fraction of Al2O3 nanoparticles. Also, the results show the largest friction factor value is obtained in the case with the highest obstacle height. It is observed that MC-3 case has maximum outlet temperature, and therefore is the best case among investigated cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.