Abstract

The inactivation kinetics of polyphenol oxidase (PPO) in freshly prepared grape must under high hydrostatic pressure (100-800 MPa) combined with moderate temperature (20-70 degrees C) was investigated. Atmospheric pressure conditions in a temperature range of 55-70 degrees C were also tested. Isothermal inactivation of PPO in grape must could be described by a biphasic model. The values of activation energy and activation volume of stable fraction were estimated as 53.34 kJ mol(-1) and -18.15 cm3 mol(-1) at a reference pressure of 600 MPa and reference temperature of 50 degrees C, respectively. Pressure and temperature were found to act synergistically, except in the high-temperature-low-pressure region where an antagonistic effect was found. A third-degree polynomial model was successfully applied to describe the temperature/pressure dependence of the inactivation rate constants of the stable PPO fraction in grape must.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call