Abstract
The braking system of a car must work safely and predictably in any circumstance, which implies having a stable level of friction, in any condition of temperature, humidity and salinity of the environment. For a correct design and operation of the brake discs, it is necessary to consider different aspects, such as the geometry, the type of material, the mechanical resistance, the maximum temperature, the thermal deformation, the cracking resistance, among others. The objective of this study was to analyze the behavior of temperature, velocity and heat flow, in the ventilation duct of an automotive disc brake with ventilation pillars different from conventional using computational fluid dynamics. The SolidWorks Simulations design software was used to analyze the behavior of the fluid (air) in terms of speed and heat dissipation capacity. The numerical results for the heat flow through the ventilation channels were compared with the results obtained mathematically. The numerical results showed that the discs performed well under severe operating conditions. In the design of the brake disc is very important to select the appropriate geometry, particularly the number and the cross section of the ducts in addition to that, the type of material. Numerical methods offer advantages through the software tools for selecting geometry and material and for modeling fluid flow to optimize heat dissipation to provide maximum performance for properly maintained components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.