Abstract
The escalating global demand for space cooling has led to the emergence of new cooling technologies, including the phase change material embedded radiant chilled ceiling (PCM-RCC) system. This technology improves energy efficiency and indoor environmental quality, while also offering demand-side flexibility. The present study experimentally evaluates the thermal efficiency and energy performance of a PCM-RCC system in a full-scale test cabin equipped with PCM panels. Here, the transient thermal behaviour of PCM ceiling panels besides the cooling energy delivered during charging-discharging cycles are examined. The indoor thermal comfort and peak electricity demand reduction enabled by the present PCM-RCC are also discussed. The results reveal that chilled water circulation for 4–5 h overnight was sufficient to fully recharge the PCM panels. Over 80% of the occupancy time was classified as “Class B″ thermal comfort according to ISO 7730. The system's daily electricity usage was mostly concentrated during off-peak hours, accounting for ∼70% of the total usage. While the controlling schedule used in this study responded to the transient thermal behaviour of the indoor space and PCM ceiling panels, a more dynamic, predictive schedule is necessary to improve the system's overall efficiency and further enhance indoor thermal comfort in response to the changing environmental conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.