Abstract

Thermogravimetry (TG), energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM), mapping surface and X-ray diffraction (XRD) have been used to study the reaction of mercury with platinum–rhodium (Pt–Rh) alloy. The results suggest that, when heated, the electrodeposited Hg film reacts with Pt–Rh to form intermetallic compounds each having a different stability, indicated by separate third mass-loss steps. In the first step, between room temperature and 170 °C, only the bulk Hg is removed. From this temperature to about 224 °C, the mass loss can be attributed to decomposition of the intermetallic PtHg4. The third step, from 224 to 305 °C, can be ascribed to thermal decomposition of solid solution composed of intermetallic species RhHg2 and PtHg2. Intermetallic compound such as PtHg4, PtHg2, and RhHg2 was characterized by XRD. These intermetallic compounds were the main products formed on the surface of the samples after partial removal of the bulk mercury via thermal desorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call