Abstract

This work reports on thermal and electrical conductivities and interface resistances for transport along aligned multiwalled carbon nanotubes (CNT) films grown on a nickel superalloy (Inconel) substrate. The measured specific thermal resistance of the combined Inconel–CNT and indium–CNT interfaces is of the same order as reported for CNT and silicon or SiO2 interfaces but much higher than theoretical predictions considering perfect contact between the tubes and substrate. Imperfect mechanical contact with the substrate and a large contribution caused by indium–CNT interface are thought to be mainly responsible for the high interface resistances and the low effective values of thermal and electrical conductivities. However, reported results represent an incentive for further research on CNT synthesis on metallic substrates for thermal management applications and pave the way for much easier integration of carbon nanotubes in electronic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.