Abstract

Electrospinning of fatty acid ternary eutectic mixture was carried out simultaneously with electrospraying of carbon fiber powder (CFP) and graphene to fabricate nanofibers with improved thermal and electrical properties. The used phase change materials (PCMs) including capric acid (CA), palmitic acid (PA), lauric acid (LA) and their ternary eutectic were supported by polymeric matrix of polylactic acid (PLA). The electrospray mixtures were prepared by dispersion of various weight fractions of CFP and graphene into isopropanol/glycerin and tetrahydrofuran (THF), respectively. The fabricated composites have undergone characterization tests including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermal and electrical conductivity tests to study their properties. The layered structure of graphene was detected both inside and on the fibers surfaces. Qualitative and quantitative measurements have shown significant improvement in both thermal and electrical conductivity of the fabricated composites. In particular, the electrical conductivity of the composites has increased 0.031 S/m in the presence of the highest graphene amount. The average melting temperature of graphene and CFP composites are 14.5 and 16.9 °C, respectively. The produced PCM composites could offer potential applications in energy storage/retrieval systems operated in near ambient temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.