Abstract

We have observed characteristic temperatures, anneal times, and doping densities that lead to stacking faults and 3C-SiC-like bands in 4H-SiC epilayers. Low energy cathodoluminescence spectroscopy measurements reveal a temperature threshold of 800 °C for emergence of these features in thermally oxidized or argon annealed 4H-SiC with an activation energy ≈2.5 eV. Stacking fault generation and polytype transformation exhibits a strong doping dependence, appearing only in a range of highly doped n-type 4H-SiC. Systematics of these strain and/or electronic effects induced by high N concentrations can be used to control structural instabilities during SiC device fabrication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.