Abstract

The enormous amount of energy is being consumed by buildings in an attempt to deliver thermal comfort in buildings. This paper aims at reducing/increasing the total solar heat gain through various combinations of double glazed reflective windows of buildings. The spectral characteristics of six reflective glasses namely bronze, green, grey, opal blue, sapphire blue and gold-reflective glasses at a normal angle of incidence by using UV-3600 Shimadzu spectrophotometer according to ASTM E 424 standards were experimentally measured. The solar optical properties of the glasses were deduced by developing a MATLAB code using spectral data which was obtained from experiments in the solar spectrum wavelength range of 300 nm–2500 nm. Thirty air-filled double-glazed reflective windows have been studied for both thermal and cost analysis in the Indian composite climatic zone (New Delhi 28.580 N, 77.200 E). The configuration C13 (Grey reflective glass-Air gap 10 mm-Gold reflective glass) is observed to be the best air-filled double glazed window from the highest annual cost savings ($ 79.29 per annum in SE direction) and lower payback period (1.42 years) point of views among thirty double-glazed reflective glasses studied. The results of this paper are useful in the design of sustainable passive solar buildings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.