Abstract

Chemical and thermal enhanced recovery of pure heavy chlorinated organic compounds (DNAPL; dense non-aqueous phase liquids) was investigated by using lab-scale 1D cells. Temperature was increased to reduce DNAPL viscosity (and hence increase its mobility), while surfactant was added to decrease capillary forces involved in the entrapment of DNAPL in porous media. Laboratory scale experiments, based on mass balance and indirect monitoring methods (i.e., permittivity, electrical resistivity and optical density), were conducted to quantify the effects of these enhancements. Heating the DNAPL up to 50 °C decreased its viscosity by a factor of two. The addition of a surfactant; i.e., Sodium Dodecyl Benzene Sulfonate (SDBS), at its Critical Micelle Concentration (to prevent DNAPL solubilization), decreased interfacial tensions by a factor of 12. Drainage-imbibition experiments performed in 1D cells provided retention curves (capillary pressure as a function of water saturation) of a two-phase (DNAPL-water) system in experimental glass bead porous media. The observed reduction of residual saturation (Srn) obtained with SDBS was 28% for 0.5 mm-diameter glass beads (GB) and 46% for 0.1 mm GB. No significant decrease in Sm was observed with thermal enhancement. The van Genuchten – Mualem model was found to satisfactorily reproduce the measured retention curves. Indirect measurements of water saturations (Sw) showed that: i. measured permittivities were very close to values modeled with the Complex Refractive Index Model (CRIM); ii. Archie's Law was less successful in reproducing measured electrical resistivities; iii. optical densities provide accurate estimations of Sw. At field scale, the combined monitoring of electrical resistivity (which provides a global picture) and permittivity (which yields locally precise but spatially limited information) is expected to significantly improve the collection of information on residual saturations Srn.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call