Abstract

Treatment of a pathological spinal disc in vivo by injection of protein crosslinking reagents to restore the disc's mechanical properties is a new approach to the treatment of degenerative disc disease. In this study, the thermal stability of the collagen in disc annulus was measured by differential scanning calorimetry following treatment with six different crosslinking agents. The crosslinkers used were; L-threose (LT), genipin (GP), methylglyoxal (MG), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), glutaraldehyde (GA), and proanthrocyanidin (PA). Untreated tissue displayed a prominent peak at about 66-68°C. Comparison of endothermal patterns of untreated and crosslinker-treated disc annulus tissue samples showed that a new peak appeared at a higher temperature following treatment. The temperature of the new peak qualitatively depended on the crosslinker in the following order GA > MG > GP > PA = EDC > LT, suggesting that the enhanced thermal stability of collagen in the annulus tissue was related to the nature of the crosslinker. Also, the enthalpic ratios of the lower temperature (noncrosslinked) peaks in the treated and untreated tissue, and of the higher and lower temperature peaks in the treated tissue, both indicated that the various agents crosslinked the tissue with different efficiencies. Our data suggest that the ability of GP to penetrate into the disc and form long- and short-range crosslinks may make it the most suitable candidate for clinical development. In addition, binary combinations of long- and short-range crosslinkers, such as PA with LT, may also provide synergistic effects due to their substantially different physicochemical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.