Abstract
Wire arc additive manufacturing process (WAAM) is an innovative technology that offers freedom in terms of designing functional parts, due to its ability to manufacture large and complex workpieces with a high rate of deposition. This technology is a metal AM process using an electric arc heat source. The parts manufactured are affected by thermal residual stresses due to high-energy input between wire and workpiece despite numerous advantages with this technology. It could cause severe deformation and change the global mechanical response. A 3D transient thermal model was created to evaluate the thermal gradients and fields during metal deposition. The material used in this study is a steel alloy (S355JR-AR). This numerical model takes into account the heat dissipation through the external environment and the heat loss through the cooling system under the base plate. Birth-element activation strategy was used to generate warm solid part following the movement of the heat source. The metal deposition is defined with constant welding speed. Goldak model was used to simulate the heat source in order to have a realistic heat flow distribution. Results were in concordance for thermal cycles at different points comparing with experimental results issued from bibliography in terms of: (1) Temperature maximum, (2) Thermal cycles and (3) Cooling gradient phase. This study enabled to check the numerical model and used as a predictive tool
Highlights
Additive manufacturing (AM) was devoted initially to prototyping
There are a variety of Wire arc additive manufacturing (WAAM) technologies that can be classified in 4 groups depending on the welding generator used: gas tungsten arc welding (GTAW), gas metal arc welding (GMAW), cold metal transfer (CMT) and plasma arc welding (PAW) [6][7]
WAAM is a process that allows parts to be produced by successive addition of material in the form of layers composed of several weld-lines
Summary
Additive manufacturing (AM) was devoted initially to prototyping. this process has become a serious competitor for the production of metal parts with technological evolution [1].Wire arc additive manufacturing (WAAM) has become a promising alternative to conventional manufacturing processes due to its high deposition rate (1-4 kg/h) [2], environmentally friendly processes [3], productivity [4], cost reduction [1] and reduction in the buyto-fly ratio (from around 10-20 for a conventionally machined component to 1 for WAAM) [5].There are a variety of WAAM technologies that can be classified in 4 groups depending on the welding generator used: gas tungsten arc welding (GTAW), gas metal arc welding (GMAW), cold metal transfer (CMT) and plasma arc welding (PAW) [6][7]. Additive manufacturing (AM) was devoted initially to prototyping. This process has become a serious competitor for the production of metal parts with technological evolution [1]. WAAM is a process that allows parts to be produced by successive addition of material in the form of layers composed of several weld-lines. The manufacturing of a part layer by layer presents a freedom of design. This process allows the realization of parts with complex shapes [8] but heat transfer need to be evaluated before completion
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.