Abstract

In this study, the thermal analysis of the ω nanophase transformation from a quenched metastable β Ti–12Mo alloy composition (mass%) was investigated by electrical resistivity and dilatometry measurements. The activation energy was observed to be 121 ± 20 kJ mol−1 (from resistivity measurements) and 114 ± 12 kJ mol−1 (from dilatometry measurements) during the early stage of the transformation process. The kinetic of the ω nanophase transformation was modelized by using the classical Johnson–Mehl–Avrami (JMA) theory and a modified Avrami (MA) analysis. An Avrami exponent close to 1.5 was found at the early stage of the transformation suggesting a pure growth mechanism from pre-existing nucleation sites. Nevertheless, it was observed a decrease of the Avrami exponent to 0.5 at higher transformed fraction demonstrating a dimension loss in the growth mechanism due to the existence of the high misfit strain at the interface β/ω.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.