Abstract
In this paper, enhancement for convection heat transfer of turbulent flow in a solar central receiver tube with porous medium and non-uniform circumferential heat flux was numerically investigated. A new method was introduced to build different porous medium configurations in a unified grid system. Four kinds of enhanced receiver tubes (ERTs) with different porous insert configurations were modeled to optimize the performance of ERT. Furthermore, parameters including filling ratio of porous medium, thermal conductivity ratio (thermal conductivity of porous medium versus that of working fluid), porosity and Reynolds number were analyzed. The results showed that ERT partially filled with porous medium has better heat transfer performance than that fully filled with porous medium. The configuration of porous insert for optimal thermal or thermo-hydraulic performance is interactively affected by all the parameters discussed in this paper. The thermal conductivity ratio is the most crucial parameter to the thermal or thermo-hydraulic performance of ERT. The value of thermal conductivity ratio should be greater than 100 to obtain a good thermo-hydraulic performance. The ERTs with horizontal cylindrical segment shaped porous inserts and hollow cylinder shaped porous inserts are proposed because they can obtain optimal thermal or thermo-hydraulic performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.