Abstract
Nowadays, polymeric composites reinforced with natural fibers are being considered in the civil engineering area. The use of polymeric composites to reinforce degraded timber structures can improve its behavior. Fibers with larger structural applications are glass and carbon but the use of natural fibers is an economical alternative and posses many advantages such as biodegradability, low cost and is derived from natural and renewable sources. Epoxy composite reinforced with sisal fabric was processed by resin transfer molding (RTM) at room temperature and this work studies thermal behavior and its respective mechanism of thermal decomposition. Samples of sisal fiber, epoxy resin and sisal/epoxy composite were characterized by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). Thermogravimetric curves showed that sisal fibers can be used in manufacturing process where the processing temperature does not exceed 177°C and shown that the epoxy resin has the greatest stability material followed by sisal/epoxy composite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.