Abstract

The effective thermal conductivity of composites with ellipsoidal fillers is analyzed by using a homogenization method that is able to represent the microstructure precisely. In this study, various parameters such as the volume fraction, shape, and distribution of the filler are quantitatively estimated to understand the mechanisms of heat transfer in the composite. First, thermal boundary resistance between resin and filler is important for obtaining composites with higher thermal conductivity. Second, the anisotropy of the effective thermal conductivity arises from contact between filler in the case of ellipsoidal filler and produces lower thermal resistance. Finally, the filler network and thermal resistance are essential for the heat transfer in composites because the path of thermal conduction is improved by contact between neighboring filler particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call