Abstract

AbstractIn the present study, the thermal behavior of a longitudinal fin considering three types of heat transfer mechanisms (conduction, convection, and radiation) is investigated. For this research, thermal conductivity, heat source, and heat transfer coefficient are assumed nonindependent. A semianalytical scheme called the Galerkin Method is utilized for solving the dimensionless governing equation. The impacts of important physical variables like Peclet number, gradient of thermal conductivity, thermo‐geometric parameter, and radiation–conduction parameter on temperature profiles are analyzed comprehensively. The obtained results indicate that raising the thermo‐geometric parameter from 0 to 2 leads to a 32% reduction in the temperature profile. Also from the results, it can be found that a 28% increment in the temperature is observed by changing the gradient of thermal conductivity from 0 to 2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call