Abstract
Screening of ligands that can bind to biologic products of in vitro expression systems typically requires some purification of the expressed biologic target. Such purification is often laborious and time consuming as well as a limiting challenge. What is required, representing an enormous advantage, is the ability to screen expressed proteins in the crude lysate stage without purification. For that purpose, we explore here, the utility of differential scanning calorimetry (DSC) measurements for detecting the presence of specific proteins and their interactions with ligands in the complex media where they were prepared, i.e. crude lysates. Model systems were designed to mimic analogous conditions comparable to those that may be encountered in actual in vitro expression systems. Results are reported for several examples where DSC measurements distinctly showed differences in the thermal denaturation behaviors of the crude lysate alone, proteins and proteins plus binding ligands added to the crude lysate. Results were obtained for Streptavidin/Biotin binding in E. coli lysate, and binding of Angiotensin Converting Enzyme 2 (ACE2) by captopril or lisinopril in the lysate supernatant derived from cultured Human Kidney cells (HEK293). ACE2 binding by the receptor binding domain (RBD) of SARS-CoV-2 was also examined. Binding of ACE2 by RBD and lisinopril were similar and consistent with the reported ACE2 inhibitory activity of lisinopril.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.