Abstract

Biocompatible polymer films demonstrating excellent thermal stability are highly desirable for high-temperature (>250 °C) applications, especially in the bioelectronic encapsulation domain. Parylene, as an organic thin film, is a well-established polymer material exhibiting excellent barrier properties and is often the material of choice for biomedical applications. This work investigated the thermal impact on the bulk properties of four types of parylene films: parylene N, C, VT4, and AF4. The films, deposited using the standard Gorham process, were analyzed at varying annealing temperatures from room temperature up to 450 °C. Thermal properties were identified by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) methods, while X-ray diffraction (XRD) analysis showed the effect of high-temperature exposure on the structural properties. In addition to thermal and structural analysis, the barrier properties were measured through the helium transmission rate (HTR) and the water vapor transmission rate (WVTR). Fluorinated parylene films were confirmed to be exceptional materials for high-temperature applications. Parylene AF4 film, 25um thick, demonstrated excellent barrier performance after 300 °C exposure, with an HTR and a WVTR of 12.18 × 103 cm3 (STP) m−2 day−1 atm−1 and 6.6 g m−2 day−1, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.