Abstract

This paper presents the results of an investigation of the thermal mechanism between lasers and surface-micromachined micromirrors. Finite element models using ABAQUS are established and used to study the temperature distribution on the surface of micromirrors under high-power laser illumination. It is shown that heat conduction through the gas gap between the mirror surface and the substrate is the dominant thermal dissipation mechanism for high surrounding gas pressure, while heat conduction through the flexures is dominant for low surrounding gas pressure. Based on the simulation results, two novel methods are proposed in order to tolerate more power input under low surrounding gas pressure. The results of optical power testing validate these models, and indicate that these two approaches are efficient in improving micromirror performance for high-energy applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.