Abstract

This paper reports on thermal characterization of high power LED arrays. Thermal transient methods are used to measure the junction temperature and calculate the thermal resistance. The emphasis is placed upon the investigation of junction temperature rise of LED array for a limited range of boundary conditions which include design effect of heat pipe, convection condition, and ambient temperature. The junction temperatures of LED array with and without heat pipe at the same air velocity of 7 m/s were 87.6 °C, and 63.3 °C, respectively. The corresponding thermal resistances of LED array were measured to be 1.8 K/W and 2.71 K/W. It was found out that the measured junction temperatures and thermal resistance of LED array are increased with the input power and ambient temperature, but decreased with the air velocity. An analytical thermal model analogous with an equivalent parallel circuit system was proposed and was verified by comparison with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.