Abstract

In this paper, thermal analysis of double data rate 5 (DDR5) dual in-line memory module (DIMM) with forced air cooling was carried out. As the requirement of memory capacity and data speed of DIMMs increase, thermal reliability issues limit the overall system performance. Furthermore, with the development of DDR4 DIMMs to DDR5 DIMMs, a power management integrated circuit (PMIC) with high power density has been added for power reliability, exacerbating the thermal issues. Hence, to secure thermal reliability, thermal management design of the next-generation DIMM is essential. This research analyzed the DDR5 DIMM at forced air cooling conditions. By using 3D fluent solver, we analyzed the thermal gradients of DIMM depending on air velocity. The results showed that the increasing air velocity has higher cooling performance. However, it showed that forced air cooling begins to have limitations in terms of cooling performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call