Abstract

In this paper, we present a thermal analysis of AlGaN-GaN power heterojunction field-effect transistors (HFETs). We report the dc, small-signal, large-signal, and noise performances of AlGaN-GaN HFETs at high temperatures. The temperature coefficients measured for GaN HFETs are lower than that of GaAs pseudomorphic high electron-mobility transistors, confirming the potential of GaN for high-temperature applications. In addition, the impact of thermal effects on the device dc, small-signal, and large-signal characteristics is quantified using a set of pulsed and continuous wave measurement setups. Finally, a thermal model of a GaN field-effect transistor is implemented to determine design rules to optimize the heat flow and overcome self-heating. Arguments from a device, circuit, and packaging perspective are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call