Abstract

A combined theoretical and experimental thermal analysis is conducted on the plates within a wet clutch for one engagement. An analytical model using the separation of variables technique is developed to simulate the temperature rise due to the non-conservative friction and relative motion between the steel plates and friction plates of the clutch. A complimentary numerical model is also developed to compute the temperature distribution in the steel plate. The experiment performed included a wet clutch instrumented with thermocouples and installed in a power-shift transmission where the temperature rise during one clutch engagement was measured. The total energy is then estimated by accounting for system inertia, torque and rotating speeds. Finally, the temperature rises predicted by the analytical and numerical models are validated with the experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.