Abstract

This paper presents design considerations for a short-operating-duty, fault-tolerant actuator for aerospace applications, with the research focus placed on thermal management. A fully enclosed and naturally ventilated permanent magnet (PM) synchronous machine with a dual-lane modular stator-winding topology is analysed. The aim is to assess alternative solutions for satisfying both sufficient heat removal and simple and robust machine construction design targets. The thermal management is particularly challenging because there are limited means for an effective heat removal from the machine body. Selected design choices impacting the machine's thermal behaviour, including alternative electrical insulation systems, winding impregnation quality, thermal contact interfaces and different winding and housing configurations are investigated. A three-dimensional (3D) transient finite element (FE) solver has been used to provide a detailed insight into the heat transfer effects. The theoretical findings suggests that the winding impregnation quality has a significant/dominant impact on the actuator's thermal behaviour, where both heat removal and heat storage need to be well balanced for the short-duty transient operation under a faulted condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.