Abstract
A homotopy analysis method (HAM) is used to develop analytical solution for the thermal performance of a straight fin of trapezoidal profile when both the thermal conductivity and the heat transfer coefficient are temperature dependent. Results are presented for the temperature distribution, heat transfer rate, and fin efficiency for a range of values of parameters appearing in the mathematical model. Since the HAM algorithm contains a parameter that controls the convergence and accuracy of the solution, its results can be verified internally by calculating the residual error. The HAM results were also found to be accurate to at least three places of decimal compared with the direct numerical solution of the mathematical model generated using a fourth–fifth-order Runge–Kutta–Fehlberg method. The HAM solution appears in terms of algebraic expressions which are not only easy to compute but also give highly accurate results covering a wide range of values of the parameters rather than the small values dictated by the perturbation solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.