Abstract

This work investigates the heat generation characteristics of a cylindrical lithium-ion battery. The battery consists of the graphite, LiPF 6 of the propylene carbonate/ethylene carbonate/dimethyl carbonate (PC/EC/DMC) solution, and spinal as anode, electrolyte and cathode, respectively. The coupled electrochemical–thermal model is developed with full consideration of electrolyte transport properties as functions of temperature and Li ion concentration. A truly conservative finite volume numerical method is employed for the spatial discretization of the model equations. Three types of heat generation sources including the ohmic heat, the active polarization heat and the reaction heat are quantitatively analyzed for the battery discharge process. The ohmic heat is found to be the largest contribution with around 54% in the total heat generation. About 30% of the total heat generation in average is ascribed to the electrochemical reaction. The active polarization contributes the least comparing to the ohmic heat and reactions heat. The results also show that the Li ion concentration and its gradient in electrolyte are the main factors giving the effect on the heat generations of active polarization and electrolyte electric resistance. The raised temperature in the battery discharge is positive related with the thickness of both separator and electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.