Abstract

Refined structure of the ferritic phase induced by mechanical milling (under reducing atmosphere) and its thermal stability are required in various applications of nanostructured ferritic alloys. The impurification with nitrogen and oxygen uptaken from the air is very probable during ball-milling, especially at the long-time high-energy milling conditions. As a rule, these interstitial impurities in as-milled powders are in quantities under the sensibility limit of conventional measurement techniques, such as XRD and SEM/EDS. To evidence the tendency for microstructure modification by impurities introduced during milling, the Fe–14Cr–3W–0.4Ti–0.25Y2O3 (Fe14Cr) ferritic steel powders (re)loaded in air and milled up to 170 h with interruption of the milling process, and heated up to 1373 K were investigated by thermal analysis in correlation with X-ray diffraction and scanning electron microscopy. XRD failed to detect the impurities in powders milled up to 38 h in air although a consistent mass loss related to the degassing of N2 was registered in thermogravimetric, TG, curves. (Fe,Cr)4N, fcc-γ, (Fe,Cr)2O3 impurity phases in powders milled over 38 h in air and (Fe,Cr)2O4 formed upon heating were readily detected by XRD. The analysis of these results allowed to better understand the impurification process and to generalise it for any as-milled Fe–Cr-based alloy powder processed in any milling conditions irrespective of the milling atmosphere, duration and thus, of amounts of contaminants. The quality of three powders milled for 170 h in three different conditions was compared: in air, under an argon atmosphere with interruptions of the milling process and under an argon atmosphere without interruption of the milling process. The contamination of powder milled for 170 h under an argon atmosphere without interruption of the milling process is insignificant (corresponding to less than 0.5 mass% mass loss in TG) as compared to powders obtained in the other two milling conditions. New approaches for minimising the contamination from air are suggested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call