Abstract

Obtaining accurate temperature distributions in living tissue related to hyperthermia skin cancer treatment without using an intruding sensor is a challenge. Here, we report a mathematical model that can accurately determine the temperature distribution in the tumor region and surrounding normal tissue. The model is based on a modified Pennes’ equation for the bioheat transfer in a 3-D triple-layered skin structure embedded with a vascular countercurrent network and a tumor appearing in the subcutaneous region. The vascular network is designed based on the constructal theory of multi-scale tree-shaped heat exchangers. The tumor is injected with gold nanoshells in order to be heated quickly. The proposed model is implemented numerically using a stable finite difference scheme. The method is demonstrated and tested by an example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.