Abstract

Additive manufacturing (AM) technology is increasingly being used in the aerospace industry due to its advantages for aerospace components such as reduction of weight. A deep understanding of the behavior and properties of additively manufactured materials or parts is required to effectively carry out the certification process which is inevitable for aerospace components. However, since AM has so many parameters that affect the performance of products, the help of high-fidelity process simulation techniques is essential to fully analyze and understand their effects. In this research, we propose a new method to effectively implement the thermal analysis for process simulations of laser powder-bed fusion technique, a representative AM technique for metal materials, using existing commercial finite element analysis software. Thermal analysis for simulations of AM process is performed and the melt pool size is compared with test results to verify the accuracy of the simulation. In AM process simulations, material properties may vary significantly with temperature, and they are also dependent on the temperature history of the material because whether the current state is a powder or solid state is determined by the maximum temperature value in the past temperature history. Therefore, in this paper, user-defined subroutines and field variables are implemented so that the temperature history of each integration point for the finite element analysis can be properly tracked and appropriate material properties can be assigned accordingly. Using the proposed methods, thermal analysis for AM process simulations can be performed successfully with good accuracy compared with the existing test results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call