Abstract
Composite patch repair of metallic structures has become a rapidly grown technology in the aerospace field due to the demand for significant increases in the useful life of both military and civilian aircraft. This has led to significant advances overall in the repair technology of cracked metallic structures. Adhesively bonded composite reinforcements offer remarkable advantages such as mechanical efficiency, repair time, cost reduction, high structural integrity, repair inspectability, damage tolerance to further causes of future strains, anticorrosion and antifretting properties. However, because of the different nature and properties of the materials that form a repair (metals, composites, adhesives), side-effects may occur: debonding due to high stress concentration in the vicinity of the crack, thermal residual stresses because of different thermal expansion coefficients of the adherents, etc. In this paper a three-dimensional finite elements analysis of the area around a patch repaired crack of a typical aircraft fuselage is performed, taking into account both the properties and the geometry of the involved materials. Examined in this case are 2024-T3 aluminum alloy as base material, FM-73 as the adhesive system and F4/5521 boron/epoxy prepreg as the patch material. Through the thickness stresses near the crack tip and along the patch edges with and without temperature effects are calculated and debonding near the crack tip is examined. Finally, the calculated results are compared with existing theories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.