Abstract

Concrete damage by high temperatures includes mass loss, strength and modulus reductions and the formation of cracks and large pores. Thermal treatment reduces the amount of chemically bound water in the hydrate phase. With a rise in temperature, the spatial distribution of Ca(OH)2 crystals becomes more compact; smaller crystals occur in a unit volume of the cement paste. A rise in temperature affects the pore structure by reducing the specific surface of hydration products. Cement paste becomes more heterogeneous in microstructure and coarser in pore structure. Compressive strength is not only significant parameter showing structural integrity of concrete; permeability influences concrete durability as well. To demonstrate this, permeability coefficients at various high temperatures are presented. The key quantitative insight into the hydrate phase behavior is based on thermal analysis results. Thermogravimetric (TG) mass losses are related to the phase changes represented either by DTA or DTG. Based on these, the tests employing TG mass losses and related DTA and DTG curves answer the question if the hydrate phase is present at individual high-temperature levels and what its quantitative state is. Method of thermal analysis is suitable for the interpretation of concrete behavior when subjected to high-temperature attack. Conclusions are drawn about thermal stability and residual properties of concrete specimens made at the construction site of Mochovce nuclear power plant (Slovakia); and subjected to temperatures up to 800°C. Relations among mechanical properties, permeability, pore median radius and bound water content in concrete are discussed and evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.