Abstract

ABSTRACTDespite the fact that the additive manufacturing (AM) technique has been established for almost two decades, its optimisation is still performed by trial and error experimentation. In the present work, a finite element modelling approach was used to study both the temperature distribution and heat flux vector characteristics during multi-layer deposition of a Ti–6Al–4V alloy that take place in the AM process. The results revealed the difference between different powder deposition time intervals on thermal cycles, heat flux vectors and the resulting microstructures. Good agreement between the numerical and experimental results was found. The results obtained can be used for process optimisation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call